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Introduction 
Targeting tumor vasculature promises new effective therapy for prostate cancer (1, 2). It avoids issues of drug 
delivery and is potentiated by massive downstream effects where one blood vessel may supply the nutrients for 
thousands of tumor cells. Thus, disrupting the vascular supply should generate magnified tumor cell kill. This 
research combines the expertise of three laboratories (Pharmacology, Urology, and Radiology) to investigate 
and optimize a novel therapeutic approach to prostate cancer. Thorpe et al. pioneered the concept of targeting 
tumor vasculature for therapeutic gain using antibodies (3). Recently, they generated a novel antibody 3G4, 
which targets phosphatidylserine (PS) expressed on tumor vasculature. 3G4 is a naked antibody, which recruits 
host defense cells to attack tumor vasculature (4-6). In collaboration with Peregrine Pharmaceuticals, this agent 
has been chimerized and is now being developed for clinical trials as Bavituximab ( It should be noted that until 
last year the name VatuximabTM  had been proposed) (7). Normally, PS exclusively resides on the cytosolic 
leaflet of the plasma membrane. However, in tumors PS becomes externalized and provides a viable target. The 
agent not only targets various tumors, but also induces vascular damage and tumor regression with minimal 
accompanying toxicity. In developing any new therapy, critical issues include scheduling, optimal combination 
with other interventions to achieve synergy and early assessment of efficacy. Magnetic resonance imaging will 
allow us to follow the induction and development of tumor vascular damage in vivo providing new insight into 
spatial and temporal activity and facilitating effective combination with the hypoxic cell selective cytotoxin 
tirapazamine. 

This research program will evaluate the ability of the agent Bavituximab to generate damage in tumor 
vasculature and induce prostate tumor growth delay. MRI will be used to assess the onset and distribution of 
tumor vascular damage in a series of Dunning prostate rat tumors (R3327- AT1, MAT-Lu, HI, and H) (8, 9) 
(10-14). This will provide an indication of the efficacy with respect to tumors exhibiting diverse histologies 
(anaplastic to well differentiated), a range of volume doubling times (1.5 to 20 days). Importantly, all these 
tumors are subclones of the original R3327-H tumor, and hence, together they represent a strong analogy for the 
clinical situation of advanced multi focal multi clonal prostate cancer. We will assess tumor response at 
different sizes and the value of repeated doses. Ultimately, we will investigate the synergistic application of 
Bavituximab with the hypoxia selective cell cytotoxin, tirapazamine (15-17). The experience in diverse 
subcutaneous models will be translated to human tumor xenografts in intraosseous models of advanced 
metastatic prostate cancer (18). Here, PSA levels and bioluminescence will provide primary indications of 
tumor growth and MRI will be applied to examine the tumor pathophysiolology. 

Successful completion of this project will confirm the potential of this new therapeutic approach to prostate 
cancer in man. It will lay the foundation for future clinical trials and promises a highly effective novel therapy 
obviating the need for radical prostatectomy, with its inherent costs, risks, and complications. Ultimately, this 
approach could lead not only to increased survival time with quality of life, but also cure of the prostate cancer 
patient. 

It should be noted that the antibody VatuximabTM was formerly called Bavituximab. 

 
Body 
D Statement of Work for Year 1 

Phase 1  Evaluate efficacy of Bavituximab to control diverse syngeneic rat prostate tumors: assess 
physiological parameters (e.g., pO2) as surrogate markers of prostate tumor control and mechanisms of 
response.  
Task 1  Months 1-3 

Implant tumors of the four Dunning prostate sublines R3327- MAT-Lu, AT1, HI, and H in Copenhagen rats. (6 
tumors of each of 4 sublines with 3 treatment sizes (0.5 cm, 1 cm, 1.5 cm diameter; respectively 0.06 cm3, 0.5 
cm3, 1.7 cm3) = 144 experimental tumors: Tasks 2, 3, 4 and 5 are based on these rats)) 
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Task 2 Months 2-15  

Measure baseline pO2 (FREDOM), perfusion characteristics (DCE MRI), and ADC of tumors with respect to 
Bavituximab infusion to assess acute response over two hours.  

 

Task 3              Months 3-15 

Response to multiple doses of Bavituximab. Use MRI to measure pO2, perfusion characteristics and diffusion 
characteristics of tumors with respect to repeated Bavituximab administration (assess response over a period of 
weeks/months by MRI and tumor volume).  

 

Task 4  Months 3-18 

 Histological analysis- assess distribution of Bavituximab, necrosis, hypoxia, perfusion based on dyes and 
antibodies. 

 

Task 5   Month 12 

Prepare annual report and manuscript.  

 

Key Research Accomplishments 
Task 1  
Implant tumors of the four Dunning prostate sublines R3327- MAT-Lu, AT1, HI, and H in Copenhagen rats  

Tumors of all four sublines have been implanted and are growing routinely in the laboratory. We have also 
preserved additional tissues to secure the lines and ensure consistency throughout the three year study. Tumors 
continue to be implanted to provide tumors for investigation in an orderly manner commensurate with imaging 
tests and therapy. 

 

Task 2  
Measure baseline pO2 (FREDOM), perfusion characteristics (DCE MRI), and ADC of tumors with respect to 
Bavituximab infusion to assess acute response over two hours.  

All the pertinent pulse sequences and MRI hardware are now functional and investigators are now familiar with 
acquiring the data. We have achieved baseline measurements for tumors of each subline and examined acute 
changes in each parameter following infusion of the drug bavituximab (formerly, VatuximabTM). 

Apparent diffusion coefficient (ADC) maps are shown for thin slices from representative Dunning prostate 
tumors of each subline in Figures 1 and 2. Each tumor shows some heterogeneity. In Figure 2 color 
representations are provided for a representative AT1 tumor, with 3 selected slices before and two hours after 
administration of Bavituximab. Table 1 provides mean values and Table 2 compares the statistical significance 
of difference between the sublines. While the maps showed no significant differences between the AT1 and 
MAT-Lu tumor types, all the other comparisons revealed significantly differences and the H showed much 
lower ADC values. 
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Figure 1   Apparent diffusion maps obtained by proton MRI at 4.7 T of Dunning prostate R3327 tumors 
growing in rats. Each image represents a slice of a tumor observed in vivo presenting diffusion maps obtained 
with 4 b-value diffusion gradients (MR parameters, FOV = 30 mm, TR = 2,300 ms, TE= 50 ms, in plane 
resolution 230 um, slice thickness 2 mm with a total acquisition time of 20 mins)                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Apparent diffusion maps obtained by proton MRI at 4.7 T of Dunning prostate R3327-AT1 
tumor. Data as for Figure 1, but hosing three consecutive image slices in representative AT1 tumor. Distinct 
baseline heterogeneity is apparent with mean ADC ranging from 10.2x10-4 to 16.2 x10-4 mm2/s. The lower 
image shows the same slices 2 h after administration of 2.5 mg/kg bavituximab. There were no significant acute 
changes. 
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10.292 3.710 <.0001 S
-3.839 3.153 .0196 S
1.079 3.349 .5083

-14.130 3.387 <.0001 S
-9.213 3.570 <.0001 S
4.918 2.987 .0027 S

Mean Diff . Crit. Dif f P-Value
AT1, H
AT1, HI
AT1, MAT-Lu
H, HI
H, MAT-Lu
HI, MAT-Lu

Fisher's PLSD for ADC pre
Effect: Tumor type
Significance Level: 5 %

            
 

Table 1 Left Relative ADC values for groups of Dunning prostate tumors. Right Statistical comparison of 
ADC values for tumor types showing levels of significance for analysis of variance based on Fisher’s test                       

Dynamic contrast enhanced MRI  
There was distinct heterogeneity between center and periphery of each tumor type as shown in the following  

Figure 3 DCE for MAT-Lu tumor. Top left Relative signal intensity map for T1 weighted MRI pre therapy 
and before contrast agent. Top center: 4 mins after contrast showing strong peripheral enhancement; Bottom left 
baseline MRI 2 h after administration of bavituximab; Bottom center 4 mins post contrast, 2 h after 
bavituximab. Right curves show mean signal enhancement for three representative image slices before and 2 h 
after bavituximab. There were no significant changes. Clearly, further analyses will be required on a regional 
signal intensity basis. 
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Figure 4 DCE for AT1 tumor. Top left Relative signal intensity map for T1 weighted MRI pre therapy and 
before contrast agent. Top center: 20 s after contrast showing strong peripheral enhancement; Bottom left 
baseline MRI 2 h after administration of bavituximab; Bottom center 20 s post contrast, 2 h after bavituximab. 
Right curves show mean signal enhancement for three representative image slices before (top) and 2 h after 
(bottom) bavituximab. 

Mean 36±1 

Periphery    43±1* 

 

( )SIΔ DCE 

%response Center 24±1 

Mean 3.05±0.37 

Periphery 3.11±0.44 

Kep (min-1) 

Center 2.59±0.51 

Table 2 Comparison of DCE parameters. For a group of AT1 tumors showing significant difference in signal 
response between central and peripheral regions of tumor (*). No differences were observed for Kep.  

 

Figure 5 Comparison of signal intensity during DCE 
experiments for a group of AT1 tumors. A significant 
difference in signal response was observed between 
central and peripheral regions of tumor. 
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Figure 6 DCE for HI tumor. Left Mean signal intensity kinetics following infusion of contrast agent. Right: 
Relative signal intensity map for T1 weighted MRI 2 h post therapy and 4 minutes after contrast agent showing 
heterogeneous perfusion. 

 
 

 

 

 

 

 
Figure 7 DCE for H tumor. Left Mean signal intensity kinetics following infusion of contrast agent. Pre 
(blue), 2h post bavituximab (pink), 7 days post (yellow). Right: Relative signal intensity map for T1 
weighted MRI pre and 4 minutes after contrast agent showing heterogeneous perfusion pre bavituximab.  

Table 3 Comparison of DCE parameters. 
For a group of H tumors there was a 
significant difference in signal response 
between central and peripheral regions of 
tumor. No differences were observed for Kep. 

 

 

 

 Figure 8 Comparison of signal intensity during 
DCE experiments for a group of H tumors. A 
significant difference in signal response was 
observed between central and peripheral regions of 
tumor, but here the center showed a larger change, 
whereas for AT1 tumors in Figure 5, the opposite 
was observed. 
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Tumor oximetry 
The FREDOM (Fluorocarbon Relaxometry using Echo Planar imaging for Dynamic Oxygen Mapping) (19) 
was successfully applied to measure tumor pO2 and dynamic response to interventions. Under baseline air 
breathing conditions all tumors show quite similar oxygenation patterns typically ranging from regions of 
hypoxia to others with pO2 ~ 40 torr. Following bavituximab administration MAT-Lu, AT1 and H tumors 
showed no particular change. However, several HI tumors showed hypoxiation over about 1 h. One week later 
both HI and H tumors showed elevated pO2. 

 

 

 

 

 

 

 

           Relaxation curve                         MAT-Lu                               HI                                    H  
Figure 9 Oximetry in Dunning prostate tumors. Left A typical 19F NMR T1 relaxation curve for the signal 
intensity of the reporter molecule hexafluorobenzene from a single voxel within a tumor. The relaxation rate is 
directly proportional to pO2. Based on such curves maps were generated for representative tumors shown for 
MAT-LU, HI and H. Voxel dimension 1.25 mm in plane with 10 mm thickness. 

Figure 10 Oxygen dynamic in Dunning prostate R3327 tumors with respect to bavituximab infusion. 
Two or three baseline pO2 maps were generated in individual tumors and then bavituximab was infused IP 
arrow). Further pO2 maps were generated over the following 2 hours. Only HI tumors showed significant 
change (hypoxiation) following infusion. Pink lines show pO2 measurements seven days later. 
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Task 3              Months 3-15 

Response to multiple doses of Bavituximab.  

Administration of bavituximab produced no significant acute changes in ADC over a period of 2 h (e.g. Figs. 1 
and 2). In most tumors there appeared to be no changes in perfusion based on DCE. However, several H tumors 
indicated reduced perfusion at 2 h, which was restored after 1 week. pO2 values were quite variable among 
individual tumors. Most showed no significant response to administration of bavituximab. However, several HI 
tumors showed significant hypoxiation during the 2 h following administration. 

H tumors indicated strong therapeutic response (Figure 11). Each tumor showed either reduction in growth or 
tumor shrinkage. Tumors of the faster growing cell lines appeared to respond less well to therapy. However, 
they generally develop massive central necrosis with only a thin peripheral rim of viable tumors. In many cases 
this was revealed as ulceration leaving a donut cavity. Thus, there is extensive tumor control, but volume 
measurement based on respective dimensions alone does not appropriately reveal the control. 

 

 

Figure 11 Growth curves for H tumors 
with respect to bavituximab therapy. 
Therapy (2.5 mg/kg thrice weekly IP) was 
initiated at times shown by arrows. In each 
case tumor growth was controlled and in one 
case the tumor disappeared. There rats are 
still alive and growth studies are ongoing.  

 

 

 

Task 4  Months 3-18 

 Histological analysis- assess distribution of Bavituximab, necrosis, hypoxia, perfusion based on dyes and 
antibodies. 

 
Figure 12 Comparison of microvasculature and hypoxia in control AT1 and H tumors. 
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Vascular endothelium marked by CD-31 (red), perfused vessels marked by Hoechst dye 33342 (blue) and 
hypoxia by pimonidazole hydrochloride (green). Images obtained with the assistance of Dr Bert van der Kogel, 
Univ. Nineteen. 
a) The AT1 tumor shows extensive hypoxia and many vessels appeared to be non-perfused. Near the tumor 
periphery, perfusion is more effective as revealed by the purple appearance of vessels (red overlapping blue).   

b) The H tumor shows more extensive vascular endothelium, which is well perfused throughout the tumor. 
Hypoxia occurs distant to perfused vessels and is less extensive. 

Treated tumors have been stored and histology is underway. 

 
Task 5  Prepare annual report and manuscript.  
Annual report is provided here and a manuscript is in preparation.  

  

Reportable Outcomes 
At this time there are no specific reportable outcomes, but manuscripts are in preparation. 

 

Conclusions 
1 Non-invasive evaluation of Bavituximab activity in vivo. Assessment of efficacy in syngeneic rat prostate 
tumor sublines of diverse characteristics at different sizes and with respect to multiple doses is underway and 
continues. MRI has been used to assess onset of tumor vascular damage and evaluate the earliest and most 
definitive indications of drug efficacy. Methods will include Dynamic Contrast Enhanced MRI, diffusion, and 
pO2 based on FREDOM (Fluorocarbon relaxometry using Echo planar Imaging for Dynamic Oxygen mapping). 
We had expected bavituximab to cause acute hypoxiation and thus act synergistically with hypoxia selective 
cytotoxins. Only HI tumors show any acute hypoxiation. Thus, for this tumor line we continue to hypothesize 
that combination of bavituximab and tirapazamine should be effective. We will still undertake the combined 
therapy trials for the other sublines since the tumors naturally show some hypoxia and thus combined therapy 
should show some advantage. However it appears that for the faster growing sublines have a rapidly 
proliferating edge escapes control. Thus we propose to add the standard chemotherapy treatment with docetaxel 
to some groups of tumor bearing rats to establish whether this can effectively control the tumors. We are 
currently seeking IACUC approval for this deviation. We will then formally propose the additional treatment to 
the CDMRP. 
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